Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 298: 198407, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812899

RESUMO

African horse sickness virus (AHSV) non-structural protein NS4 is a nucleocytoplasmic protein that is expressed in the heart, lung, and spleen of infected horses, binds dsDNA, and colocalizes with promyelocytic leukemia nuclear bodies (PML-NBs). The aim of this study was to investigate the role of AHSV NS4 in viral replication, virulence and the host immune response. Using a reverse genetics-derived virulent strain of AHSV-5 and NS4 deletion mutants, we showed that knockdown of NS4 expression has no impact in cell culture, but results in virus attenuation in infected horses. RNA sequencing (RNA-seq) was used to investigate the transcriptional response in these horses, to see how the lack of NS4 mediates the transition of the virus from virulent to attenuated. The presence of NS4 was shown to result in a 24 hour (h) delay in the transcriptional activation of several immune system processes compared to when the protein was absent. Included in these processes were the RIG-I-like, Toll-like receptor, and JAK-STAT signaling pathways, which are key pathways involved in innate immunity and the antiviral response. Thus, it was shown that AHSV NS4 suppresses the host innate immune transcriptional response in the early stages of the infection cycle. We investigated whether AHSV NS4 affects the innate immune response by impacting the JAK-STAT signaling pathway specifically. Using confocal laser scanning microscopy (CLSM) we showed that AHSV NS4 disrupts JAK-STAT signaling by interfering with the phosphorylation and/or translocation of STAT1 and pSTAT1 into the nucleus. Overall, these results showed that AHSV NS4 is a key virulence factor in horses and allows AHSV to overcome host antiviral responses in order to promote viral replication and spread.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vírus da Doença Equina Africana/genética , Animais , Cavalos , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Microsc Microanal ; 23(1): 56-68, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28112080

RESUMO

The bulk of the major core protein VP7 in African horse sickness virus (AHSV) self-assembles into flat, hexagonal crystalline particles in a process appearing unrelated to viral replication. Why this unique characteristic of AHSV VP7 is genetically conserved, and whether VP7 aggregation and particle formation have an effect on cellular biology or the viral life cycle, is unknown. Here we investigated how different small peptide and enhanced green fluorescent protein (eGFP) insertions into the VP7 top domain affected VP7 localization, aggregation, and particle formation. This was done using a dual laser scanning confocal and transmission electron microscopy approach in conjunction with analyses of the solubility, aggregation, and fluorescence profiles of the proteins. VP7 top domain modifications did not prevent trimerization, or intracellular trafficking, to one or two discrete sites in the cell. However, modifications that resulted in a misfolded and insoluble VP7-eGFP component blocked trafficking, and precluded protein accumulation at a single cellular site, perhaps by interfering with normal trimer-trimer interactions. Furthermore, the modifications disrupted the stable layering of the trimers into characteristic AHSV VP7 crystalline particles. It was concluded that VP7 trafficking is driven by a balance between VP7 solubility, trimer forming ability, and trimer-trimer interactions.


Assuntos
Vírus da Doença Equina Africana/metabolismo , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Proteínas do Core Viral/fisiologia , Proteínas do Core Viral/ultraestrutura , Vírus da Doença Equina Africana/genética , Animais , Baculoviridae/genética , Regulação Viral da Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde , Estágios do Ciclo de Vida , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/ultraestrutura , Células Sf9 , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas Virais de Fusão/fisiologia , Proteínas Virais de Fusão/ultraestrutura , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...